
Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016, pp. 166-168
© Krishi Sanskriti Publications
http://www.krishisanskriti.org/Publication.html

Detection and Prevention of SQL Injection
Attacks in Web Applications

Neetika Srivastava1, Shivani Thapar2 and Aruna Bhat3
1,2,3Department of IT, IGDTUW

E-mail: 1neeti92sri@gmail.com, 2sthapar91@gmail.com, 3abigit06@yahoo.com

Abstract—Web applications use the database at the backend for
storing data and SQL (Structured Query Language) for insertion and
retrieval of data. There are some malicious codes that can be
attached to the SQL called SQL Injection. SQL injection is a hacking
method that is based on the security vulnerabilities of web
application. The paper aims to give a comparison between the tools
used for detection and discuss a prevention technique recently
proposed and its limitations

1. INTRODUCTION

The World Wide Web has been developed with very rapid
progress in recent years. Web applications use the database at
the backend for storing data and SQL (Structured Query
Language) for insertion and retrieval of data. There are some
malicious codes that can be attached to the SQL called SQL
Injection. One of the best ways to secure applications is by
limiting access to those authorized to access the application.
SQL injection is a hacking method that is based on the
security vulnerabilities of web application. A SQL injection
attack consists of insertion or "injection" of a SQL query via
the input data from the client to the application. A successful
SQL injection exploit can read sensitive data from the
database, modify database data (Insert/Update/Delete),
execute administration operations on the database (such as
shutdown the DBMS), recover the content of a given file
present on the DBMS file system and in some cases issue
commands to the operating system. SQL injection attacks are
a type of injection attack, in which SQL commands are
injected into data-plane input in order to effect the execution
of predefined SQL commands. The attacker’s input is
transmitted into an SQL query in such a way that it will form
an SQL code. Different types of SQL injection attacks are
possible. Some of them are mentioned below [1]:

TYPE OF
ATTACK

WORKING METHOD

Tautologies SQL injection queries are injected into one
or more conditional statements so that they
are always evaluated to be true.

Logically incorrect
queries

Using error messages rejected by the
database to find useful data facilitating
injection of the backend database.

Union Query Injected query is joined with a safe query
using the keyword UNION in order to get
information related to other tables from the
application.

Stored Procedures Many databases have built-in stored
procedures. The attacker executes these
built-in functions using malicious SQL
Injection codes.

Piggy-backed
queries

Additional malicious queries are inserted
into an original injected query.

Inference

- Blind Injection

- Timing Attacks

An attacker derives logical conclusions
from the answer to a true/false question
concerning the database.

Information is collected by inferring from
the replies of the page after questioning the
server true/false questions.

An attacker collects information by
observing the response time (behaviour) of
the database.

Alternate encodings It aims to avoid being identified by secure
defensive coding and automated
prevention mechanisms. Hence, it helps
the attackers to evade detection. It is
usually combined with other attack
techniques.

Once an attacker realizes that a system is vulnerable to SQL
Injection, he is able to inject SQL Query /Commands through
an input form field. This is equivalent to handing the attacker
our database and allowing him to execute any SQL command
including DROP TABLE to the database

An attacker may execute arbitrary SQL statements on the
vulnerable system. This may compromise the integrity of our
database and/or expose sensitive information. Depending on
the back-end database in use, SQL injection vulnerabilities
lead to varying levels of data/system access for the attacker.

The aim of the thesis is to find a novel method that helps
prevent SQL injection in web applications when it is already
deployed on the server and being used.

Detection and Prevention of SQL Injection Attacks in Web Applications 167

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

2. DETECTION OF SQL INJECTION ATTACKS

Detection of SQL injection attack on web applications is very
necessary nowadays as it possess a real threat for the
application administrators. Databases running in the backend
must never be visible to the end user or anyone who might
misuse the data. To do the process of detection and having a
comparative analysis of tools that work in this area, we make
use of the following tools:

a) VEGA: Vega is a free and open source scanner and
testing platform to test the security of web applications.
Vega can help you find and validate SQL Injection,
Cross-Site Scripting (XSS), inadvertently disclosed
sensitive information, and other vulnerabilities. It is
written in Java, GUI based, and runs on Linux, OS X, and
Windows.[4]

b) SQLMAP: SQLMAP is an open source penetration
testing tool that automates the process of detecting and
exploiting SQL injection flaws and taking over of
database servers. It comes with a powerful detection
engine, many niche features for the ultimate penetration
tester and a broad range of switches lasting from database
fingerprinting, over data fetching from the database, to
accessing the underlying file system and executing
commands on the operating system via out-of-band
connections.[5]

c) HAVIJ: Havij is an automated SQL Injection tool that
helps penetration testers to find and exploit SQL Injection
vulnerabilities on a web page. It can take advantage of a
vulnerable web application. By using this software user
can perform back-end database fingerprint, retrieve
DBMS users and password hashes, dump tables and
columns, fetching data from the database, running SQL
statements and even accessing the underlying file system
and executing commands on the operating system. The
power of Havij that makes it different from similar tools
is its injection methods. The success rate is more than
95% at injectiong vulnerable targets using Havij. The user
friendly GUI (Graphical User Interface) of Havij and
automated settings and detections makes it easy to use for
everyone even amateur users. [6]

Work Flow

a) Collected a list of 100 vulnerable sites from [2]. The sites
listed are vulnerable to SQL injection and other similar
attacks.

b) Vulnerability analysis of the web applications on VEGA.
c) Vulnerability analysis of the web applications on

SQLMAP.
d) Vulnerability analysis of the web applications on HAVIJ.
e) Comparative analysis of the above outputs.

Inference

a) Out of the 100 websites under test, 45 were prone to
SQLia according to VEGA testing.

b) Out of the 100 websites under test, 30 were prone to
SQLia according to SQLMAP testing.

c) Out of the 100 websites under test, 63 were prone to
SQLia according to HAVIJ testing.

d) Traditional SQL injection that attempts to retrieve
complete tables is rare on websites

e) Blind SQL injection is most prevalent.

Fig. 1: Comparative analysis of the detection
tools used to detect SQLIA.

Hence, false negative ratios (false negative is an error in which
a test result improperly indicates no presence of a condition
(the result is negative), when in reality it is present.) of the
tools are:

 VEGA= 55%

 SQLMAP= 70%

 HAVIJ= 33%

3. PREVENTION OF SQL INJECTION ATTACKS

Quite a number of techniques and tools have been developed
by companies and proposed by individuals for prevention of
SQL injection attacks in web applications. For preventing the
SQLIAs defensive coding has offered as a solution but it is
very difficult. Not only developers try to put some controls in
their source code but also attackers continue to bring some
new ways to bypass these controls. Hence it is difficult to keep
developers up to date, according the last and the best defensive
coding practices [3].

The latest one proposed works on the principle of hash
algorithms and is given in [7]. It uses the hash algorithm to
detect and also prevent the malicious query to run on the
application’s backend. It simply blocks the query on the
criteria that the hash of the input query does not match the
hash of the query that should actually be passed.

The flowchart of the system is shown below:

0

20

40

60

80

VEGA SQLMAP HAVIJ

No. Of websites detected

Neetika Srivastava, Shivani Thapar and Aruna Bhat

Advances in Computer Science and Information Technology (ACSIT)
p-ISSN: 2393-9907; e-ISSN: 2393-9915; Volume 3, Issue 3; April-June, 2016

168

Fig. 2: Flowchart of the system proposed in [7].

The drawback that this proposed method has can be explained
using the following example:

Ex 1: Input query: Select name from Employee where

 ID=009

MD5 Hash Calculated:

22a818a76ec793660da86643bd3f5829

Ex 2: Input query: Select name from Employee where

 ID=098

 MD5 Hash calculated:

634982767e69b44f43cf54dd5c647f51

Point to be noted is even though both the queries are valid and
should run fine, but the proposed work does not let the second
query run because the hash does not match with the valid
query run before in Ex 1. This creates a number of false
positives and the system does not run the valid queries too.

4. CONCLUSION

There are a lot of techniques and tools to find bugs, errors or
vulnerabilities in web application. Various detection and
prevention techniques that have been used or proposed carry
their advantages and drawbacks. No method can be said to
have no drawbacks.

Future work includes the:

a. Detection of SQL injection using different Hash
 algorithms.

b. Configuring a firewall that is placed between
 the User interface and backend database that is

 responsible for the filtering and cleansing of the

 query provided by the user. Only after cleansing

 should the query be sent to the backend for

 processing. Filtering is to be done using a cheat

 sheet of possible malicious queries that may

 cause the attack.

5. ACKNOWLEDGEMENTS

Sincere thanks to Aruna ma’am for valuable guidance in the
work done. Big thanks to the head of department and all the
professors for their immense support in our work.

REFERENCES

[1] Kindy, Abdoulaye, D., and Pathan, A.K., " A survey on SQL
injection: Vulnerabilities, attacks, and prevention techniques.",
(2011): 77.

[2] SQL Vulnerable sites [Online]. Available:
http://waziristanihaxor.blogspot.in/2015/02/SQL-
VULNERABLE- websites-List.html

[3] Tajpour, Atefeh. "Evaluation of sql injection detection and
prevention techniques." Computational Intelligence,
Communication Systems and Networks (CICSyN), 2010 Second
International Conference on. IEEE, 2010.

[4] VEGA Vulnerability scanner [Online]. Available:
https://subgraph.com/vega/

[5] SQLMAP: automatic SQL injection and takeover tool [Online].
Available : http://sqlmap.org/

[6] Havij Vulnerability scanner [Online]. Available:
http://downloadhavij.blogspot.in/2013/07/download-havij-117-
free-full-version.html

[7] Mahdi, Maki, and Mohammad, A.H., "USING HASH
ALGORITHM TO DETECT SQL INJECTION
VULNERABILITY." (2016).

